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Abstract—Electric vehicles (EVs) are at the intersection of
transportation systems and energy systems. The batteries in
EVs, an increasingly prominent type of energy resource, are
largely underutilized. In this paper, we propose a new business
model that monetizes underutilized EV batteries to significantly
reduce the demand charge portion of many commercial and
industrial electricity users’ electricity bills. This business requires
minimal hardware to enable discharging the batteries of electric
vehicles and a sharing platform that matches EVs to commercial
electricity users in real time. In a case study using real meter data,
we show that a large number of users can be served by a small
number of EVs in the proposed business model. Cost-revenue
analysis based on a real electric tariff suggests that the demand
charge saving covers the capital costs of needed hardware and
the compensation for EV drivers to provide the service.

Index Terms—Sharing economy, V2G, mobile storage

I. INTRODUCTION

The high cost of electric vehicles (EVs) and the limited
access to EV charging facilities are hurdles in the path to
transportation electrification [1]. Although the cost of EV
batteries is trending down [2], the break-even point between
the unsubsidized upfront costs of EVs and gasoline-powered
vehicles may not come until 2025 [3]. Moreover, the low pen-
etration of public EV charging facilities precludes consumers
who cannot install home charging systems from adopting
EVs. Even for consumers with access to home charging,
limited public charging access coupled with range anxiety
leads to the perception that EVs are incapable of long-distance
travel and therefore may be inferior substitutes to gasoline-
powered vehicles. Sharing provides a potential resolution to
both challenges: sharing an EV across many uses possibly by
many users can increase the value of the EV and thus justify
its higher cost; sharing a private charging port by many users
and possibly for different uses can increase the utilization of
the charging hardware and thereby lead to a higher return on
investment in charging facilities.

On the grid side, increasing EV charging loads puts more
stress on power distribution networks. Accommodating the re-
sulting higher peak loads may require upgrades to distribution
network assets such as transformers. In the U.S., utility com-
panies pass part of these costs to large electricity users through
demand charges that bill users based on their maximum power
consumption (kW) during each month in addition to the
volumetric charge based on total energy consumption (kWh).
Meanwhile, the trend to integrate renewable and distributed
energy resources (DERs), such as roof-top solar panels, has
encouraged adoption of time-varying retail electricity tariffs
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such as time-of-use rates and critical-peak pricing. These
trends in electricity tariffs encourage commercial and indus-
trial electricity users to procure and operate behind-the-meter
DERs including stationary energy storage and vehicle-to-grid
(V2G) technologies to reduce their electricity bills.

The conventional wisdom of V2G involves charging and
discharging the battery of an EV that is usually parked for
a long period of time (e.g. during the evening for an EV
parked at home or during the daytime for an EV parked at
a workplace) according to grid signals such as prices. The
economic viability of V2G hinges on the comparison of the
value provided by the EV battery to the grid and various
costs, including the capital cost of V2G-enabling equipment
and costs associated with degradation of the EV battery from
additional cycles performed for V2G purposes [4]. However,
individual EV owners can hardly assess the degradation costs
to their EV batteries because (a) the time periods for which
the EV is providing grid services are usually long, (b) the
charging/discharging operations during such long periods are
not known a priori, and (c) estimating the impact of any given
charging/discharging operations on battery’s life is a complex
task [5], [6]. On the other hand, the owner of a V2G charging
facility has difficulty in predicting the return on investment
of such equipment as it depends on stochastic arrivals and
departures of EVs and EV owners’ willingness to participate
in V2G services [7]. As a result market adoption of V2G
technologies has been limited [8].

In this paper, we propose the model of a novel business
based on sharing on demand V2G-compatible electric vehicles.
The business builds upon a platform that matches EVs to
commercial and industrial electricity users. For each match, in
order to reduce the user’s demand charge, the EV is dispatched
to discharge its battery for a short time period (e.g. 15 minutes
for many states in the U.S.) through a behind-the-meter V2G
charging port that is connected to the user. We assess the
viability of the business by a cost benefit analysis using real
meter data, real electricity tariffs, and realistic capital cost
numbers for V2G EV chargers. A key finding of the analysis is
that different users tend to have different peak (and sub-peak)
times and as a result a small number of EVs can serve a large
number of users. Further, when users make multiple requests
per month, the value created by the proposed business model
not only covers the costs of the V2G chargers but also leaves a
surplus that can be shared between users and EV drivers. These
findings suggest that the proposed business (a) can become a
successful sharing economy example for the smart grid even in
today’s institutional and regulatory environment, (b) provides
a use case with a strong value proposition for behind-the-meter
DER adoption , and (c) initiates a novel approach to V2G that
reduces or circumvents concerns with the conventional V2G
approach.
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A. Related work

Motivated by recent successes of the sharing economy in
the transportation and housing markets and the fact that there
are underutilized DERs that can be monetized, a line of
research addresses the problem of sharing these DERs through
a platform. Kalathil et al. [9] formulate the problem of energy
storage sharing among a collection of firms, characterizes
the equilibrium prices and analyzes the storage investment
game. By establishing that the Nash equilibrium supports
social welfare, the authors show that sharing improves welfare
and utilization of storage assets. A similar setup for energy
storage sharing is studied by Chakraborty et al. [10] where a
coalitional game approach is taken. Tusher et al. [11] design
an auction scheme to enable residential energy storage owners
to share a portion of their storage capacities to certain shared
facility controllers. Lombardi and Schwabe [12] evaluate the
potential of sharing energy storage with different storage
technologies and different use cases. Common to these papers
is the use of the electric power network to enable a DER to be
shared by users at different locations. However, as the power
network is usually owned and operated by an electric utility
company, large scale implementation of these proposed shar-
ing businesses requires the permission of utility companies.
Our proposed business model, by contrast, uses EVs to enable
sharing of DERs (i.e., mobile energy storage) and interacts
with the users through behind-the-meter connection points that
are beyond the jurisdiction of the utility companies.

V2G has been an active topic of research for the past
decade (see e.g. [13], [14] and references therein). Various use
cases have been proposed and demonstrated, including peak
shaving [15], price arbitrage [16], frequency regulation [17],
and distribution constraint management [18]. See [5] for a
summary of 50 major V2G demonstration projects around the
world. To date wide market adoption has not yet happened
because, as discussed before, battery degradation concerns
of EV owners and difficulties in predicting EV arrival and
departures for businesses providing the V2G facilities. We
address these challenges by proposing the novel concept of
on-demand V2G that provides EV owners monetary benefits
in exchange for discharging their batteries for a short period
of time.

Demand charge reduction using stationary storage has been
investigated in several papers [19], [20] and has been a
major selling point of several energy storage companies in
the U.S. [21]. However, with unshared stationary batteries,
the demand charge savings are reduced by the high capital and
installation costs of on-site battery systems. On the other hand,
as will be evident from our analysis, significant demand charge
reduction can be achieved with sparse manipulations of the
electricity consumption profiles, i.e., reducing the electricity
consumption in a small number of peak (or sub-peak) metering
intervals. Furthermore, if such metering intervals for different
users are temporally dispersed, then using a small number of
shared EV-based mobile storage can achieve a demand charge
reduction comparable to using stationary batteries but with a
significantly lower cost.

B. Organization

The rest of the paper is organized as follows. Section II
introduces our system and business model. We then describe
the approach used to evaluate the potential value that can be
created by our business model in Section III. Such a value
proposition is supported by certain upfront capital investment
and can only be realized if the platform has access to enough
number of EVs. We therefore analyze the cost and EV
requirements of the proposed business model in Section IV.
In Section V, we conduct a case study with real meter data
and a real electricity tariff. Section VI concludes the paper.

II. SYSTEM AND BUSINESS MODEL

We propose to consider an Uber-like matching platform and
a two-sided market organized by it. The demand side of the
market consists of C&I electricity users. Each user is equipped
with a bi-directional EV charger and wishes to reduce its
demand charge. The supply side of the market consists of
EV drivers who are willing to drive to users’ locations
to discharge their EV batteries through a bi-directional EV
charger. The platform matches the user requests with available
EV drivers. Individual components of the business are detailed
in the following subsections. A nomenclature is provided in
Appendix A.

A. User energy consumption

We consider a setting with I commercial and industrial
electricity users. For user i, the power consumption (unit: kW)
over a month is a continuous time process {pi,t : t ∈ T },
where T = [0, T ] and T is the length of the month in
minutes. Typical utility meters only measure and collect energy
consumption (unit: kWh) data at regular subintervals of T
with length denoted by ∆. These subintervals are referred to
as metering intervals. For instance, ∆ is 15 minutes for many
U.S. utilities. For s = 1, . . . , S with S = T/∆, denote the
sth subinterval by Ts = [(s− 1)∆, s∆]. Thus the sequence of
discrete time energy consumption measurements collected by
the utility company is {ei,s : s ∈ S}, where

ei,s =

∫
t∈Ts

pi,t d t, s ∈ S = {1, . . . , S}.

For convenience, we denote the reversed order statistics of
the energy consumption time series by {ei,(k) : k ∈ S} so
that ei,(1) ≥ ei,(2) ≥ · · · ≥ ei,(S). We refer to ei,(1) as the
peak, and ei,(k) as the kth sub-peak of the time series. We
also denote the index of metering interval corresponding to
the kth sub-peak by si,(k), k ∈ S.

B. Electricity tariff

The monthly electricity bill of user i is calculated based on
the sequence {ei,s : s ∈ S}. The most commonly known com-
ponent of the electricity bill is the energy charge, computed
based on how much energy is used during the month. When the
energy price for different time of the day is constant, energy
charge is also referred to as the volumetric charge as it depends
on the energy consumption process {ei,s : s ∈ S} only
through

∑
s∈S ei,s. It is increasingly common for commercial
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and industrial users to face a time-of-use tariff in which a
weighted sum of {ei,s : s ∈ S} is used to calculate the energy
charge.

In addition to the energy charge, a majority of commercial
and industrial electricity users in the U.S. also face demand
charges [22] that often account for 50% of their monthly
electricity bills [23], [24]. For each user i, the demand charge
component is usually calculated by multiplying the user’s
demand by some demand charge rate, where the demand is
defined to be the user’s maximum power consumption (kW)
over the month approximated by

di =
1

∆
max
s∈S

ei,s =
ei,(1)

∆
.

The demand charge is then computed by multiplying this
demand with a demand rate denoted by πd.

C. V2G charger

We consider the setup where each user is connected to a
behind-the-meter V2G charger. The charger can be either an
AC level 2 charger (up to 19.2 kW) or a DC fast charging
charger (up to 36 kW, 90kW, and 240 kW for DC level 1,2 and
3, respectively) [25], depending mostly on the user’s need for
charging EVs rather than discharging EVs for demand charge
reduction purposes1. We denote the maximum discharging rate
(kW) by U , taking into account both the charger’s power
capacity and the power capacity of the user’s local circuit2.
The monthly amortized capital cost of each V2G charger is
denoted by C.

D. On demand electric vehicles

There are J EVs available for the service. Each EV is
assumed to be compatible with the V2G chargers so that the
EV and any V2G charger can be properly connected, and
the EV’s onboard hardware and software support the V2G
charger3. Between each EV driver and the platform, there is
an active communication link through for example a mobile
application. When an EV is requested for service, it is given
an address where the driver can find a V2G charger to connect
to and a time when the EV starts to discharge its EV battery at
the maximum rate4 U for a period of length ∆. An EV should
hold at least ∆U (kWh) amount of energy prior to arriving at
the user’s location.

E. Matching platform

A sophisticated matching platform may be designed to con-
nect EV drivers to commercial and industrial electricity users
in order to reduce users’ demand charges while minimizing
the costs of providing such services. However, in this paper,
we consider a very simple matching design for the purpose

1Results in Section V suggests AC level 2 charger has a sufficient power
capacity to serve the demand charge reduction requirements of most users.

2We do not consider grid-side constraints since our business model only
reduces power consumption and does not introduce back-flow into the grid.

3An example is Nissan Leaf EVs with CHAdeMO chargers.
4The power limit of EV battery is usually much larger than the charger’s

capacity [4].

of estimating the potential of the proposed business. Better
platform designs will of course increase this potential.

In particular, we consider a setting where all users are
located in a small urban area (e.g., an area that corresponds
to several zip codes) such that from any point to any other
point the driving time is bounded by α∆, and energy needed
is bounded by β∆U , where α, β > 0.

We consider the following mode of operation:
1) At any time, the platform maintains a set of available

EVs, comprising the EVs not currently serving a user
and with state of charge no smaller than (1 + β)∆U .

2) At any time τ , any user may make a request for service
starting no earlier than τ + α∆.

3) Upon receiving a request from user i, the platform
matches the user with the available EV closest to the
user’s location.

4) The matched EV then travels to the user’s location,
connects to the user’s V2G charger, and starts to discharge
at the user requested starting time. The EV driver is
compensated based on a payment calculation scheme that
splits the demand charge reduction with the user and the
EV driver.

III. VALUE ASSESSMENT

The major source of value created by this business model is
the savings in electricity bills of the users due to the reduced
demand charges. We assess the potential total cost saving of
the proposed business based on the following two assumptions:
A1 No uncertainty: Each user can perfectly forecast its energy

consumption time series {ei,s : s ∈ S}, i = 1, . . . , I .
A2 r requests per month: Each user makes r ∈ Z+ service

requests per month, with the value of r to be specified.
Assumption A1 is demanding in that it requires the user

to foresee its entire time series of energy consumption for
all future metering time intervals until the end of the month.
Although for many commercial and industrial energy users,
short-term energy consumption forecasting with a forecast
horizon ranging from 5 minutes to one hour can be done with
good accuracy [26], predicting energy consumption many days
in advance requires good forecasts about the temperature and
other factors such as occupancy. Fortunately, for our purpose
it suffices for each user to predict the time intervals when
monthly peak and sub-peaks occur. We briefly discuss the case
with uncertainty in Section III-A and leave the full problem
of requesting the service under uncertainty to future work.

Assumption A2 is introduced to simplify the accounting. In
the sequel we will vary the value of r and estimate the cost
savings as a function of r.

Under these assumptions, each user will request services for
time intervals corresponding to the 1st to rth sub-peaks5. The
resulting modified energy consumption time series of user i
contain the following entries

ei,(1) −∆U, . . . , ei,(r) −∆U, ei,(r+1), . . . , ei,(S).

5We make the mild assumption that ei,(r) > ei,(r+1) for all i so that
the rth sub-peak is unique. If this does not hold, we can simply break ties
arbitrarily.
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For each value r, the modified demand for user i is then

d̃i(r) =
max

{
ei,(1) −∆U, ei,(r+1)

}
∆

,

and the corresponding demand reduction is

di(r)− d̃i(r) = min

{
ei,(1) − ei,(r+1)

∆
, U

}
. (1)

Therefore the total demand charge reduction for all users in
this month is

V (r) = πd

I∑
i=1

min

{
ei,(1) − ei,(r+1)

∆
, U

}
.

A. Case with uncertainty

In this section, we relax Assumption A1 and discuss the
value created by the business model when users cannot ac-
curately forecast their future energy consumption profiles. We
do this by considering two scenarios.

a) Information rich scenario: In this case, users have
access to data sources that can provide relevant historical and
real time data to guide the decision when to request service.
Each user i can then form the probability distribution of
ei,s for each period s, possibly conditioning on exogenous
observations such as prediction of outside temperature. Given
the probability distributions, the problem of optimal requesting
the service r times over the month can be formulated as a
stochastic control problem. As the state variables for the prob-
lem are the running maximum (i.e., the maximum modified
energy consumption that is observed so far) and the number
of remaining requests, which results in a two-dimensional state
space, the stochastic control problem can be solved efficiently
using standard methods such as discretization (see e.g., [19]
for a similar treatment for the problem of using stationary
energy storage to reduce demand charge). Further, the problem
can be thought of as a variant of the celebrated (multi-choice)
prophet inequality problem [27]–[29], where the goal of the
decision maker is to select top k valued items that are coming
up online. Rich structural results have been established for
the prophet inequality problem and may be extended to our
setting where the payoff for the decision maker depends on
the maximum value of the unselected items. We leave the
investigation of identifying the exact optimal control policy
under uncertainty to future work.

b) Information scarce scenario: At the other extreme,
some users may have no information other than the real time
energy consumption6. To provide a (loose) lower bound for
the case with uncertainty relative to the value created in the
no uncertainty case, we consider the following adversarial
uncertainty model.
A3 Uncertainty model: Let S̄ ⊆ S be the subset of metering

intervals containing candidate intervals when the energy
consumption for the user may peak. An adversary decides
a set of |S̄| energy consumption values. These values are

6Many users may not have access to real time energy consumption data as
it is usually the case that utility companies only provide delayed data access
(e.g., after the end of the month with the electricity bill) if any. However,
many utility companies indeed provide real time meter data to commercial
and business users at a cost (e.g. PG&E’s Stream My Data program).

then assigned to the metering intervals in S̄ in an order
that is picked uniformly at random.

In Assumption A3, the candidate set S̄ is used to preclude
metering intervals that are unlikely to be a peak period based
on certain side information. For instance, for a user that does
not use any energy during the night, the set S̄ only contains
metering intervals during the day. The assumption that the
energy consumption levels are determined by an adversary
encapsulates the notion that these energy consumption values
cannot be predicted due to a lack of information. Meanwhile,
the assumption that these energy consumption values are
revealed in a random order captures the fact that with no prior
information, any metering interval in S̄ is equally likely to be
the peak.

Under Assumption A3, the following result holds when a
user only request one service a month (r = 1).

Lemma 1: For r = 1, there exists a causal policy resulting in
an expected demand charge reduction under uncertainty that is
no less than 1/e of the demand charge reduction with perfect
foresight.

Proof: Under Assumption A3, the problem of finding a
metering interval in S̄ maximizing the probability that it is the
peak period is an instance of the classic secretary problem. The
policy that does not request a service in the first |S̄|/e periods
and then requests a service in the first period when the energy
consumption is the largest observed energy consumption so
far is optimal [30]. The probability for this policy to find the
peak period is no less than 1/e. Hence the expected demand
charge reduction with this policy is no less than 1/e of the
demand charge reduction with perfect foresight.

IV. COSTS AND REQUIREMENTS

In addition to the amortized capital cost of the V2G
charger C, there are several other sources of cost for the
EVs to provide the service to the users. The first is the cost
associated with the energy discharged from the EV batteries.
On the users’ side, the energy inflow not only reduces their
demand charges but also reduces their energy charges. Thus
the platform can simply transfer the energy charge savings
from the users to the EV drivers to compensate drivers’ cost
for recharging EV batteries7. Other costs include the time and
effort of the EV drivers and the potential negative impacts
on the lifespan of the EV batteries. These costs are difficult
to quantify. Instead of directly model these costs, we will
calculate the payments each driver may receive for fulfilling
one service request, and compare such payments with the
driver earnings for offering services via ride-hailing platforms.

The rest of the section is devoted to the task of estimating
the number of EVs required to serve a population of users.

A. Number of EVs needed: the case without inter-service time

To start, we consider the ideal case where there is no inter-
service time, that is, after an EV completes a service at an
user’s location, it is immediately relocated to the next user’s

7Alternatively, an EV providing service to a user may re-charge the battery
at the user’s location during an off-peak time.
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location (if there is a request for the next period) and always
has enough energy to finish the service for the next user. In
other words, in this subsection we ignore the time needed for
the EV to travel between different user locations and the time
needed to recharge the EV battery. We denote by ` the inter-
service time measured by the number of time periods (so the
actual length of the inter-service time is ∆`).

In this zero inter-service time case (` = 0), the number of
EVs required to complete the service in time period s ∈ S, as a
function of inter-service time ` and the number of request each
user makes r, denoted by Js(`, r), is the number of concurrent
requests in the period:

Js(0, r) =

I∑
i=1

1
{
ei,s ≥ ei,(r)

}
,

and the number of required EVs over all time periods is

J(0, r) = max
s∈S

Js(0, r).

B. Number of EVs required: the case with inter-service time

When the inter-service time is nonzero (` > 0), one estimate
of the number of EVs required is simply the number of EV
needed in the case without inter-service time multiplying by
`+ 1. Indeed, if for example ` = 1, we can serve all requests
by a set of J(0, r) EVs serving all odd-numbered time periods
and a disjoint set of J(0, r) EVs serving all even-numbered
time periods. This argument easily extends to any number `
and therefore we have

J(`, r) = (`+ 1)J(0, r), ` = 1, 2, . . . .

In our business model, it requires at most α∆ time for
transporting between two locations (see Section II-E) and
at most (1 + β)∆ time for recharging the battery assuming
availability of an EV charger of capacity U somewhere on the
route between each pair of users. Thus after serving a user,
an EV is unavailable for at most d1 + α + βe periods of ∆
length. It is then straightforward to verify that an upper bound
of the number of EVs required for our business model is

J(r) = (1 + d1 + α+ βe)J(0, r) = d2 + α+ βeJ(0, r). (2)

V. CASE STUDY

A. Data description

A dataset containing Irish smart meter data8 for about 6000
residential and business electricity users for the period from
August 2009 to December 2010 [31] is used for our study.
The metering interval for this dataset is ∆ = 30 minutes. We
rank these users according to their peak energy consumption
for the entire 17 months and obtain a subset with 100 users
that have the largest peak energy consumption values. The
peak demand values (kW) for these 100 users are in the
range [45 kW, 130 kW]. For the purpose of this case study, we
will assume each of these 100 users has a V2G EV charger
dedicated for this business and compare the capital costs of

8The meters measure the net load of the users. According to the survey from
the dataset, only 2 C&I users in the dataset have behind-the-meter distributed
generation (e.g. solar panel).

the chargers with the revenue generated from demand charge
reduction.

We use PG&E A-10 tariff which is a common tariff for
small and medium commercial and industrial electricity users
(i.e., users with demand less than 500 kW). The summer
demand rate under this tariff is $18.28/kW and the winter
demand rate is $10.95/kW.

We consider two candidate types of V2G chargers9: a low
cost AC level-2 charger with capacity UL = 15 kW and
amortized cost CL = $230/year, and a high cost DC fast
charging charger with capacity UH = 30 kW and amortized
cost CH = $1600/year.

In this case study, assumptions A1 and A2 are in force.
These results can be extended to the case with uncertainty
under A3. Under more realistic uncertainty models, how users
would optimally request the service is an important direction
for future investigation. We also do not treat inter-service time
in this case study, because the number of required EVs with
non-zero inter-service time can be calculated from that without
inter-service time using (2) in a straightforward manner.

B. Single request per month: r = 1

We start by considering the case when each user requests
service only once per month. In this case, the service period
for each user will correspond to the metering interval in which
the user has the maximum energy consumption, i.e., si,(1) for
i = 1, . . . , I .

Fig. 1 depicts the histograms of the set of metering interval
indices {si,(1) : i = 1, . . . , I} for each of the 17 months,
where the number of metering intervals for each month is
S. Here the y-axis reveals the number of requests in each
interval. By reading the maximum values on the y-axis in
each of the histograms, we see that for all but 1 of the 17
months, peak times for different users are dispersed and the
maximum number of concurrent service requests is 2. Thus
J(0, 1) = 2 for these 16 months and the proposed business
model can be implemented with a very small number of EVs if
the inter-service time is small. In the other month (July 2010),
a similar pattern for the peak time distribution is observed with
the maximum number of concurrent requests being 3.

Fig. 2 shows the month-by-month demand reduction (kW)
values for the users using box plots10. The overall average
demand reduction is depicted with the green dashed line,
which is slightly less than 2 kW. A high demand reduction
can only be realized if the V2G charger has enough power
capacity (see (1)). The black dotted line corresponds to the
power limit of an AC level-2 charger. Comparing it to the box
plots, we find that except for one user in November 2010, the
demand charge reduction needs can be well accommodated.
In fact, for all months, more than 90% of the requests can be

9The amortized annual costs are calculated based on averaging the low
estimates and high estimates of total cost numbers reported in [4], [32] with an
expected life span of 15 years. No interest adjustment is used in the calculation
but including it does not change the qualitative conclusions of the case study.

10On each box, the central mark indicates the median, and the bottom and
top edges of the box indicate the 25th and 75th percentiles, respectively. The
whiskers extend to the most extreme data points not considered outliers, and
the outliers are plotted individually using the ’+’ symbol.
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Peak time (index of 30-min interval in month)
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Fig. 1. Histograms of peak times (r = 1) for 100 users. The values of m represent the month IDs, which starts with August (m = 8) 2009 and ends at
December (m = 12) 2010.

served with a 6 kW V2G charger if all users only make one
request per month.
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Fig. 2. Month-by-month demand reduction distribution when r = 1.

Fig. 3 shows the month-by-month demand charge reduction
($) values for the users using box plots. The overall average
demand charge reduction is $28.18 per user per month, which
is enough to cover the amortized capital cost of the AC level-2
charger but much less than the amortized capital cost of the
DC fast charging charger. Variability over months and users
in demand charge reduction is also observed. In some months
and for some users, the demand charge reduction by making
a single requests can be as high as $200. These correspond to
larger users with less regular energy consumption patterns that
may be targeted as early customers of the proposed business.
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Fig. 3. Month-by-month demand charge reduction distribution when r = 1.

C. Multiple requests per month: r > 1

When the number of requests per user per month (r)
increases, concurrent requests become more likely. However,
the increase in r results in a smooth increase in the number
of concurrent requests. Therefore, the overall observation that
the business model can be sustained with a small number of
EVs continues to be true. Indeed, Fig. 4 shows the number
of requests in each of the metering intervals in all months
as r increases. In particular, for each value of r, Fig. 4
contains a box plot summarizing the distribution of the number
of requests in each of the metering intervals11 in S. From
the figure, we can observe that for r = 1, . . . , 6, most

11Metering intervals in different months with the same indices are consid-
ered different intervals.
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metering intervals have 0 requests and the maximum number
of concurrent requests J(0, r) increases from 3 for r = 1 to
8 for r = 6. For r = 7, . . . , 18, a certain portion (less than
25%) of the metering intervals start to have 1 requests and the
majority of intervals have no more than 2 requests as indicated
by the whiskers of the box plots. The maximum number of
concurrent requests increases from 8 to 13 in a smooth fashion.
For r = 19, . . . , 30, the median number of requests increased
from 0 to 1 while the majority of intervals have no more than
5 requests. The maximum number of concurrent requests for
r = 30 (1 request per day on average) is 21, significantly
smaller than the number of users (i.e., 100) and also smaller
than r. Overall, Fig. 4 suggests that even when users start to
make many requests each month, only a small number of EVs
is required to serve a majority of the requests.
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Fig. 4. Distribution of the number of requests in each metering interval as r
increases.

On the other hand, increasing the number of requests per
month allows each user to reduce their demand to a level
corresponding to its (r + 1)th sub-peak. Thus a larger value
of r results in a larger potential in demand reduction and
demand charge reduction. Fig. 5 and Fig. 6 demonstrate
the demand reduction and demand charge reduction when r
increases, respectively, where for each user we have averaged
the demand reduction (and demand charge reduction) over the
17 months. As expected, both demand reduction and demand
charge reduction increase monotonically as the number of
request per month increases. In Fig. 5, we compare the demand
reduction with the power capacity of the AC level-2 charger
UL = 15 kW and the DC fast charging charger UH = 30 kW.
It turns out that the power capacity of the AC level-2 charger
covers 75% of the users’ need even if the number of requests
per month for each user increases to 30. The increased demand
reduction results in a higher value of the business, significantly
exceeding the amortized capital cost of the AC level-2 charger
as evident from Fig. 6. Therefore, when the number of requests
per month starts to increase, the value created by this business
model not only covers the costs of the V2G charger but also
creates surplus that can be shared between the users and the
EV drivers.
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Fig. 5. Demand reduction distribution when r increases.
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Fig. 6. Demand charge reduction (per month) distribution when r increases.

Finally, we can calculate the net revenue (demand charge
reduction less the amortized capital cost for AC level 2
chargers) that can be shared among the EV drivers. Fig. 7
reports the average net revenue that can be provided to EV
drivers per request for various values of r. As the number
of request per month r increases, the total demand charge
reduction for each user increases but this larger demand charge
reduction is realized by requesting the service more times.
As such, the average net revenue per request peaks at an
intermediate r value (r = 2 for this case). If each user requests
the service twice a month, the average net revenue that may
be paid to the EV driver is $14.97 per service12. Note this
payment is in addition to the payment for covering the cost of
charging up the EV battery which is derived from the energy
charge reduction as discussed in Section IV.

12As a comparison, median hourly pay with tip for Uber drivers in the U.S.
is $14.73 according to a survey among Uber drivers [33]. Our business only
requires the driver to park at a particular location for 15 minutes (for most
states in the U.S.) or 30 minutes (for the dataset used in this case study).
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Fig. 7. Average net revenue per request as r increases

D. Comparison to stationary battery

We provide a brief comparison to the setting using stationary
batteries for demand charge reduction. The comparison is not
comprehensive because we are not accounting for the other
values streams created by the stationary batteries and we
are not accounting for side values created by V2G chargers
and EVs. Nevertheless, it should put the demand reduction
and demand charge reduction estimates we obtained for the
proposed business model in context.

Parameters for Tesla Powerwall13 are used for the study. The
battery capacity is 13.5 kWh, the power capacity is 5 kW, and
the round-trip efficiency is 90%. The capital and installation
cost for one Tesla Powerwall is $7600–$9600. Given that
each Tesla Powerwall comes with a 10-year warranty, the
estimated monthly amortized capital and installation cost for
one Powerwall is in the range of $63.3–$80. For each user, we
consider installing 1–6 Powerwall batteries. The optimization
solved to determine the battery operation schedules is provided
in Appendix B where we made the same no uncertainty
assumption as we did for the mobile storage case.

The distribution of demand reduction and demand charge
reduction, over the 100 users and averaged across the 17
months, are shown in Fig. 8 and Fig. 9, respectively. In Fig. 8,
we see that the median demand reduction is close to the upper
bound (5 kW multiplied by the number of batteries) for one
and two batteries but becomes considerably lower than the
upper bound when each user installs more than 2 batteries. In
Fig. 9, the savings from demand charge reduction is compared
to low and high estimates of monthly amortized battery capital
and installation costs. Unlike the mobile storage case where
the savings clearly pay for the cost of an AC level 2 charger,
whether the demand charge reduction can cover the costs of
the stationary battery system is largely determined by the
installation cost as it is the major source of variability in the
battery cost estimates. Further, comparing Fig. 6 with Fig. 9,
we see that 10 requests per month in the mobile storage case
leads to a larger median demand charge reduction than that

13The values are retrieved in July 2018 at https://www.tesla.com/powerwall.

generated by 1 Tesla Powerwall batteries. This suggests, at
least, that sparse manipulation of the load profile using mobile
batteries offers a competitive approach to stationary batteries.

1 2 3 4 5 6

Number of batteries

5

10

15

20

25

30

D
e

m
a

n
d

 r
e

d
u

c
ti
o

n
 (

k
W

)

Fig. 8. Demand reduction distribution with an increasing number of batteries
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Fig. 9. Demand charge reduction (per month) distribution with an increasing
number of batteries

VI. CONCLUDING REMARKS

This paper presents a novel business model that reduces
commercial and industrial electricity users’ demand charges
using on demand EVs. We develop a rigorous procedure for
estimating the cost and revenue of the proposed business,
and through a case study using real electricity usage data we
demonstrate that a large number of users can be served by
a small number of EVs. Further, when users make multiple
requests per month, we show that the value created by the
proposed business model not only covers the costs of the V2G
chargers but also leaves a surplus that can be shared between
users and EV drivers. In particular, we demonstrate that this
surplus can support a per service driver compensation that
is comparable to Uber’s median hourly salary and provide a

https://www.tesla.com/powerwall
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considerable incentive to encourage EV drivers’ participation.

There are a number of limitations of our current analysis.
(a) Although we have provided a way to bound the impacts
of demand uncertainty and non-zero inter-service time (which
includes the time needed to recharge EV batteries), a more
detailed model and analysis could lead to a more accurate
estimation of these impacts. (b) There are a number of
arguably less significant cost and benefit items that are not
considered in our analysis. For instance, due to the conversion
loss, user-side energy charge savings may not fully cover
EV drivers’ cost of recharging their EV batteries. However,
this difference is relatively small because our service only
requires discharging the EV battery for 15 minutes (in the
U.S.) and thus only discharges a relatively small amount of
energy from the EV battery. On the benefit side, our analysis
shows that demand charge reduction can cover the cost of
bi-directional AC level 2 chargers needed for the business.
However, these charger may be used for other purpose during
off-peak hours. Carefully accounting these additional costs and
benefits can result in a more realistic analysis of the business
case. (c) The quantitative results in the case study depend on
the characteristics of the C&I users involved (e.g., size of the
users and whether behind-the-meter solar is present). Thus to
determine whether the proposed business model is suitable for
a particular set of users, one should apply our methodology
to the energy consumption data of these users.

Going beyond the basic question “is there indeed a business”
for the proposed business model, we can identify the following
important future directions. First, developing an efficient and
robust matching platform is critical for the proposed business.
Addressing practical complexities that arise from both the
energy side (e.g., uncertainty in peak times) and the transporta-
tion side (e.g., travel time prediction) is the key of scaling up
the service in practice. Pricing is a key aspect in the platform
design. In practice, it is essential to set the price of the service
to grow both sides of the market. On the demand side, the
price should incentivize C&I users to install a bi-directional
charger and start to use the service. On the supply side, the
price should lead to sufficient compensation for the drivers
to incentivize driver participation and compliance. The price
is also likely to vary across time and locations reflecting the
spatial and temporal variation of supply and demand. Second,
as the peak demand for the proposed service only occurs in
a small fraction of time (see Fig. 1 and Fig. 4), some EVs
will be idle when few users are requesting the service. Thus
stacking additional revenue streams on top of the proposed
service can further increase the utilization of the EVs and
the revenue of the matching platform. Such revenue streams
include providing additional energy services (e.g., EV roadside
rescue services [34]) and transportation services (e.g., ride
sharing). Finally, it is interesting to explore and quantify the
impacts of the proposed business on both the energy sector
(e.g., impacts to utility companies’ revenue and to aggregate
peak demand at the distribution feeders) and the transportation
systems (e.g., impacts on local traffic congestion).

APPENDIX A
NOMENCLATURE

Variable Description
I Total number of C&I users
i User index
T Number of minutes in the month
T Continuous time window for the month
∆ Number of minutes in a metering interval
S Number of metering intervals in the month
s Metering interval index
Ts Continuous time window for sth metering

interval
pi,t Power consumption (kW) of user i at time t
ei,s Energy consumption (kWh) of user i in

metering interval s
ei,(k) kth sub-peak in user i’s energy consumption

process
si,(k) Metering interval index of user i’s kth

sub-peak
di User i’s demand (kW) in the month
d̃i User i’s modified demand (kW) in the month
πd Demand charge rate ($/kW)
U Maximum discharging rate of the charger (kW)
C Amortized capital cost of the charger ($/month)
α∆ Upper bound of driving time between requests
β∆U Upper bound of energy needed for driving

between requests
r Number of requests each user makes per month
V (r) Total demand charge reduction
`∆ Inter-service time
Js(`, r) Number of EVs required in metering interval s
J(`, r) Number of EVs required across all time periods

APPENDIX B
DEMAND REDUCTION USING STATIONARY BATTERY

For the ith user, we denote the battery capacity by B, the
power limit by U , round-trip efficiency by µR, the state of
charge in time slot s by bi,s, charging in time slot s by Ci,s,
and discharging in time slot s by Di,s. The optimization we
solve to find the battery operation is

min
Ci∈RS ,Di∈RS ,bi∈RS+1

max
s∈S
{ei,s + Ci,s −Di,s}

s.t. 0 ≤ Ci,s ≤ U, ∀s,
0 ≤ Di,s ≤ U, ∀s,
bi,s+1 = bi,s + µCCi,s −Di,s/µ

D, ∀s,
0 ≤ bi,s ≤ B, ∀s,
bi,0 = bi,S = 0,

where the charging efficiency µC and discharging efficiency
µD are determined as µC = µD =

√
µR.
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