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Abstract— Major Transportation Network Companies
(TNCs), including Uber and Lyft, are in the process of
electrifying their fleets. These electrified fleets can provide
electricity service in addition to transportation services. This
paper examines the problem of optimal spatial pricing for a
TNC operating a fleet of electric vehicles (EVs) that provide
both transportation service and electricity service. When the
system demand is spatially balanced, we establish a tight
characterization of the optimal pricing and compensation
policy, and the platform profit. Furthermore, we highlight
the role electricity service may provide in reducing the
transportation spatial imbalance and characterize the resulting
synergetic value.

I. INTRODUCTION

With the continuing decarbonization efforts in the electric-
ity sector, the transportation sector has surpassed the electric-
ity sector to become the largest source of U.S. greenhouse
emission since 2016 [1]. As average vehicles are parked 95%
of the time, prioritizing the electrification of vehicles that
have a higher travel intensity (usually measured in vehicle-
miles traveled (VMT)) can lead to a larger impact on emis-
sion reduction. Vehicles operated by Transportation Network
Companies (TNCs) are among those with highest VMT [2].
Policies aiming to steer TNCs to electrify have emerged.
Examples include California’s Clean Miles Standard [3] and
the Delhi (draft) Electric Vehicle Policy [4]. Meanwhile,
major TNCs have set goals and experimented with a variety
of programs to encourage electrification. For instance, Uber
has a goal of delivering five million electric rides by 2019
while Lyft aims to deliver one billion electric rides by 2025
[5]. Given these trends, it has be projected that EVs will
account for 80% of the shared mobility fleet by 2040 [6].

In addition to transportation service, electrified TNCs can
provide other services to create new revenue streams and
offset the upfront cost of the EVs. Electricity service is a
natural candidate. The underlying technology for EVs to
offer electricity service (e.g. vehicle-to-grid and vehicle-to-
building) has been tested and piloted in various studies [7],
[8]. New business models (e.g. demand charge reduction, EV
roadside assistance and emergency power supply) that only
require EVs to connect for a short period of time on demand
have also been proposed or tested [9]–[11].

Spatial balancing is a key challenge in TNCs’ (electri-
fied or not) daily operation. It involves creating location-
dependent incentives to nudge the supply and demand in
order to minimize their spatial mismatch. Spatial mismatch
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is costly to TNCs because it results in higher waiting
times (and therefore a higher cancellation rate) in some
locations and idle drivers in other locations. Pricing and
compensation policies are powerful tools in reducing spatial
mismatch as spatial pricing can (to a large extent) shape
the spatial distribution of demand while location-dependent
compensation can incentivize drivers to relocate to the right
locations. The optimal spatial pricing problem is to identify
a location dependent pricing and compensation policy that
maximizes the profit of the TNC (via minimizing the spatial
mismatch).

This paper studies the spatial pricing problem in the
context of shared electric mobility. We consider a TNC that
provides transportation and electricity services by matching
EVs to user requests. Offering transportation service requires
an EV to move from a location to another, while offering
electricity service requires an EV to park at a location for a
certain time period. These two types of services have differ-
ent location-dependent request rates and can have different
location-dependent prices and compensation. Since the same
set of EVs are used for both services, a strong coupling effect
exists between offering them. The fundamental goal of this
paper is to understand and quantify this coupling effect with
a focus on spatial balancing. In particular, we wish to answer
the following question: whether and when does offering two
services create synergetic value?

In the process of answering this question, we make the
following contributions. We develop a stylized model of a
TNC providing transportation and electricity services over a
network of locations. Within the model, the TNC’s pricing
and compensation policy is determined by solving a non-
convex optimization that maximizes the per period platform
profit under incentive compatibility constraints and equilib-
rium flow constraints. We show that the optimal solution of
this nonconvex program can be recovered from a simpler
optimization, which is convex for a number of commonly
used willingness to pay distributions. Focusing on uniform
distributions, we develop a tight characterization of the
optimal spatial pricing policy and closed form expressions
for the optimal platform profit and the system equilibrium
states. Furthermore, we identify conditions on the spatial
demand patterns under which providing electricity service
reduces transportation spatial imbalance and thus generates
strictly positive synergetic value.
Literature. There is a growing literature addressing various
challenges in the pricing and operation of TNCs. Among
them, Banerjee et al. [12] develops a queueing theoretic
model to study the optimal pricing problem in a TNC



platform and analyzes the performance of dynamic and static
pricing rules focusing on the temporal aspect of the problem.
Bimkipis et al. [13], on the other hand, investigates the spatial
pricing problem for a TNC operating over a network of
locations. Several other related aspects are also investigated,
see e.g. [14] for regulating TNCs, [15] for the role of self-
scheduling, and [16] for relocation of strategic drivers.

The literature on using TNC EVs to provide electricity
service is limited. The only work that we are aware of is
Mamalis et al. [17], which extends queueing theoretic model
of [12] to study the problem of designing driver incentives
to maximize the platform revenue when two services are
provided. No spatial aspect is considered in [17].

Our spatial pricing model is an extension of Bimkipis et
al. [13]. Novel aspects of our model include introducing the
electricity service in the spatial pricing context, character-
izing the interaction between transportation and electricity
services, and uncovering the demand-balancing role that may
be played by offering electricity service.

II. MODEL

A. Network

Consider a network of locations {1, . . . , n}. In this paper,
we focus on the case of equidistant networks, where the
distance between any two locations is the same and is
normalized to one. Extensions to general networks will be
studied in the future.

B. Time

We consider an infinite horizon discrete time setup. Within
one time period, an EV can either fulfill a (transportation
or electricity) service request or travel from one location to
another. Since we are focusing on the spatial aspect of the
problem, we will assume that the inputs are time-invariant
and study the equilibrium outcomes of the model1.

C. User Requests

The platform receives two types of requests: transportation
service requests and electricity service requests. To fulfill a
transportation service request, a matched EV will drive the
user from one location to another as specified by the user. In
the equidistant network case, this takes one period of time.
To fulfill an electricity service request, a matched EV will
park at a user-specified location for one period of time2.

We model transportation requests by a tuple (A,θ, F (·)).
Here θi ≥ 0, i = 1, . . . , n is the potential request rate at
location i. The ij−th entry of matrix A, denoted by αij ,
is the fraction of users at location i who wish to go to
location j. The matrix A is a stochastic matrix: αij ≥ 0
for all i and j and

∑n
j=1 αij = 1. It can also be viewed

1Our results can also be interpreted as the system is operating at the
equilibrium for a single time period.

2Our model may be applied to a variety of electricity services mentioned
in Section I provided that the following requirements hold: (a) the duration
of the service is comparable to the typical duration for a transportation
service, which is on the order of 15 minutes, and (b) the energy (kWh)
requirement for providing is low or modest. Demand charge reduction and
emergency roadside battery recharge are two such examples.

as a weighted adjacency matrix associated with the network,
where there is a directed edge from i to j if αij > 0. We
assume the graph defined by adjacency matrix A is strongly
connected. The rate of potential requests for trips from i to
j is θiαij . If the price of the platform charges for using the
service is p, then the actual request rate for such trips is
(1−F (p))θiαij , where F (·), with support [0, u], models the
empirical cumulative distribution of the willingness to pay
for using the transportation service.

The electricity service requests are modeled by a pair
(θ̃, F̃ (·)). Here θ̃i ≥ 0, i = 1, . . . , n is the potential request
rate at location i. If the price of the platform charges for using
the service is p̃, then the actual request rate for such service
is (1− F̃ (p̃))θ̃i, where F̃ (·), with support [0, ũ ], models the
empirical cumulative distribution of the willingness to pay
for using the electricity service.

D. EV Drivers

Due to the timeliness requirement of the service, we
assume that user requests at location i can only be served
by EVs located at i in the same time period. Under this
assumption, drivers may move from location i to location j
for two reasons: (a) fulfilling a transportation service trip,
or (b) relocating to another location with a higher potential
earning on their own.

Upon completing a service or relocating to another loca-
tion, drivers may exit the platform with probability (1− β),
where β ∈ (0, 1) captures the fact that in expectation a driver
only provides service for a limited time period. We refer to
this time period as a driver’s lifetime. We assume at any
location there is an infinite supply of drivers. Each driver
has an outside option with expected lifetime earning w > 0
such that a driver will choose to enter the platform only if
the expected earning of entering is no smaller than w.

E. Pricing

The platform determines its pricing and compensation
policy for transportation service {pi, ci}ni=1 and electricity
service {p̃i, c̃i}ni=1. Here pi ≥ 0 is the price the platform
charges the users of transportation service originating3 from
location i and ci ≥ 0 is the compensation the platform pays
the drivers. Similarly, p̃i ≥ 0 and c̃i ≥ 0 denote the price
and compensation the platform sets for electricity service at
location i.

Denote the actual request arrival rates for transportation
and electricity services at location i by λi and λ̃i, respec-
tively. Given the pricing policy, the actual request arrival
rate for transportation service from location i to location j
is (1− F (pi))θiαij , and we have

λi = (1− F (pi))θi, ∀i. (1)

Similarly, the actual request arrival rate for electricity service
at location i is

λ̃i = (1− F̃ (p̃i))θ̃i, ∀i. (2)
3Given the equidistant network assumption, we focus on origin-only

pricing for transportation service in this paper. See [13] for a detailed
comparison between origin-only pricing and origin-destination pricing.



F. Matching

The same pool of EVs are used to fulfill the two types
of service requests. We assume that drivers do not have an
option to refuse a request. Instead, they have the option to
exit the platform at the end of each period.

An EV at location i is deemed available if the driver
maintains an active communication link with the platform
through the mobile application and if the EV’s battery has
enough energy to provide any type of service the platform
offers.

The platform distinguishes the EVs only by their location
at the beginning of each time period. At location i, when
a new request arrives (either for providing transportation
service or electricity service), an EV located at the same
location gets matched to the request uniformly at random,
given that there is a sufficient number of available EVs at i.
When the number of requests at a location and time exceeds
the number of EVs available at that location, priority is
given to transportation service.4 The excess requests are not
matched and simply exit the system.

Denote the mass of drivers at location i at the beginning
of a period by xi. Under this matching policy, the number of
served transportation requests at location i in a given period
(throughput) is

Qi(xi, λi) := min{xi, λi}, (3)

and the number of served electricity requests at location i in
a given period is

Q̃i(xi, λi, λ̃i) := min
{

(xi − λi)+, λ̃i
}
. (4)

We denote the probability that a driver at i gets matched
to a transportation service request by ρi(xi, λi) and the
probability that a driver at i gets matched to an electricity
service request by ρ̃i(xi, λi, λ̃i). Under the transportation
priority rule, it is easy to see that

ρi(xi, λi) = min {(λi/xi), 1} , (5)

ρ̃i(xi, λi, λ̃i) = 1{xi > λi}min

{
λ̃i
xi
,
xi − λi
xi

, 1

}
. (6)

G. Platform Profit

The goal of the platform is to maximize its (per period)
profit under the equilibrium outcome induced by the pricing
and compensation policy {pi, ci, p̃i, c̃i}ni=1. In particular, the
profit of the platform has the following form:∑

i

(pi − ci)Qi(xi, λi) + (p̃i − c̃i)Q̃i(xi, λi, λ̃i),

where λi, λ̃i, xi are the induced equilibrium values.The
precise form of this dependence is outlined in the next
section.

4It will become clear later (see the proof of Lemma 1) that our results
also apply to the no priority case and to the case where the priority is given
to electricity service.

III. PLATFORM OPTIMIZATION

A. Equilibrium

Denote the mass of drivers entering at location i at the
beginning of a period by δi, and the mass of drivers at
location i who decide to relocate to location j upon not
getting matched to a service request by yij .

At equilibrium, by flow conservation,

xi = β

∑
j

αjiQj(xj , λj) + Q̃i(xi, λi, λ̃i) +
∑
j

yji

+δi,

(7)
for all i. The first term in the bracket is the mass of drivers
who move to location i while fulfilling transportation service.
The second term in the bracket is the mass of drivers who
stay at location i for fulfilling electricity service. The third
term in the bracket is the mass of drivers who move to
location i on their own for a higher expected earning. The
last term is the mass of drivers who enter the platform at
location i.

Meanwhile, the total mass of drivers who are not matched
satisfies the following identity∑

j

yij =
[
xi − λi − λ̃i

]
+
, ∀i, (8)

where [z]+ := max(z, 0). Here
∑
j 6=i yij is the total mass

of unmatched drivers moving to a different location j and
yii is the mass of unmatched drivers who stay at i. We refer
to (7) and (8) as equilibrium flow constraints.

Denote the expected future earning for a driver at each
location i by Vi. At equilibrium,

Vi =ρi(xi, λi)
(
ci +

∑
j

αijβVj
)

+ ρ̃i(xi, λi, λ̃i) (c̃i + βVi)

+
(

1− ρi(xi, λi)− ρ̃i(xi, λi, λ̃i)
)
βmax

j
Vj , (9)

for all i. The first term is the expected earning from offering
transportation service. The second term is the expected
earning from offering electricity service. The last term is
the expected earning for the driver to be unmatched and to
relocate to the location with the maximum expected earning.

Since the outside earning of the driver is w, and since
there are an infinite number of potential drivers, we have at
the equilibrium Vi ≤ w. On the other hand, for a driver to
enter the platform, he must earn at least w. Thus

Vi = max
j
Vj = w, for all i such that δi +

∑
j

yji > 0,

(10)
where locations such that δi +

∑
j yji > 0 are those with a

positive mass of drivers entering or relocating to. We refer to
(9) and (10) as drivers’ incentive compatibility constraints.

We formally define the notion of equilibrium as follows.

Definition 1 (Equilibrium). Given a pricing and compen-
sation policy {pi, p̃i, ci, c̃i}ni=1, an equilibrium is a tuple
{λi, λ̃i, xi, yij , δi}ni,j=1 such that λi, λ̃i, xi, δi, yij ≥ 0 for
all i, j = 1, . . . , n, satisfying users’ incentive compatibility



constraints (1) and (2), equilibrium flow constraints (7) and
(8), and drivers’ incentive compatibility constraints (9) and
(10).

B. Profit Maximization

The platform’s goal is to maximize its equilibrium profit
rate by setting a pricing and compensation policy:

max
∑
i

(pi − ci)Qi(xi, λi) + (p̃i − c̃i)Q̃i(xi, λi, λ̃i)

s.t. {λi, λ̃i, xi, yij , δi}ni,j=1 is an equilibrium

under {pi, p̃i, ci, c̃i}ni=1, (11)

where the decision variables include the prices and com-
pensation pi, p̃i, ci, c̃i ≥ 0, and the equilibrium states
λi, λ̃i, xi, yij , δi, i, j ∈ {1, . . . , n}. This is a challenging
optimization due to nonconvex equilibrium constraints. In
fact, it is not even immediately clear whether an equilibrium
(and therefore a feasible solution of problem (11)) exists. We
show this is indeed the case:

Proposition 1. There exists a feasible solution to (11).
Furthermore, there exists an equilibrium under every non-
negative {pi, p̃i, ci, c̃i}ni=1, provided θi > 0 for all i ∈
{1, . . . , n}.

The first part of Proposition 1 establishes that regardless of
the values of exogenous parameters, problem (11) always has
a feasible solution (and therefore an optimal solution). The
second part guarantees the existence of an equilibrium for
any given pricing and compensation policy under additional
conditions on the transportation demand patterns. Proposi-
tion 1 does not address the uniqueness of the equilibrium. In
fact, there may be pricing and compensation policies under
which the equilibrium states and the platform profit are not
unique. However, it will become clear later that this is not
the case under the optimal pricing and compensation policy.

Instead of directly tackling the nonconvex problem (11),
we construct a simpler problem (12) and then formally
establish the connection between these two problems:

max
∑
i

piλi + p̃iλ̃i − w
∑
i

δi (12a)

s.t. λi = (1− F (pi))θi, ∀i, (12b)

λ̃i = (1− F̃ (p̃i))θ̃i, ∀i, (12c)

xi = β

[∑
j

αjiλj + λ̃i +
∑
j

yji

]
+ δi, ∀i, (12d)∑

j

yij = xi − λi − λ̃i, ∀i, (12e)

pi, p̃i, xi, yij , δi ≥ 0, ∀i, j, (12f)

where the decision variables include the prices {pi, p̃i}ni=1

and the equilibrium states {λi, λ̃i, xi, δi, yij}ni,j=1. Compar-
ing (11) with (12), we notice the following differences: (a)
the nonlinear equality flow constraints are replaced with
linear ones, and (b) decision variables for compensation
{ci, c̃i}ni=1 no longer appear in the objective function, and (c)

the drivers’ incentive compatibility constraints are relaxed.
Despite these differences, we can recover the optimal solu-
tion of (11) given an optimal solution of (12):

Lemma 1. Suppose F (·) and F̃ (·) are absolutely continuous
distributions that are strictly increasing over their supports.
Suppose (1 − β)w < min{u, ũ}. Let an optimal solution
of (12) be denoted by {p?i , p̃?i , λ?i , λ̃?i , x?i , δ?i , y?ij}ni,j=1. Then
there exists a compensation policy {c?i , c̃?i }ni=1 such that
{p?i , p̃?i , c?i , c̃?i , λ?i , λ̃?i , x?i , y?ij , δ?i }ni,j=1 is an optimal solution
of (11).

The additional condition (1−β)w < min{u, ũ} is imposed
so we can focus on the interesting parameter region of the
problem. In fact, this is precisely the condition such that
drivers’ outside option is not too high and they are willing to
provide any service (transportation or electricity) through the
platform. To see this, given w is the drivers’ lifetime earning
of the outside option, the minimum amount of per period
compensation that the platform provides to a driver is (1−
β)w as

∑
t β

t(1−β)w = w. If this condition does not hold,
at least one service cannot provide sufficient compensation
to drivers, and thus, is inactive. Therefore, the maximum
profit the platform can extract per request is u − (1 − β)w
for transportation service, and ũ − (1 − β)w for electricity
service. For convenience, denote

π := u− (1− β)w, π̃ := ũ− (1− β)w.

If we focus on the case π, π̃ > 0, Lemma 1 establishes that
it suffices to work with problem (12). While this optimization
is still nonconvex for general distributions F (·) and F̃ (·),
it is a convex optimization for several commonly used
distributions (e.g. uniform and exponential). For simplicity,
we work with uniform distributions for the rest of the paper.
That is, the willingness to pay for transportation service
follows a uniform distribution on [0, u], and the willingness
to pay for electricity service follows a uniform distribution
on [0, ũ]. In this case, (12) reduces to a convex quadratic
program:

max
∑
i

piλi + p̃iλ̃i − w
∑
i

δi (13a)

s.t. λi = θi (1− pi/u) , ∀i, (13b)

λ̃i = θ̃i (1− p̃i/ũ) , ∀i, (13c)

δi =
∑
j

(yij − βyji) + (λi − β
∑
j

αjiλj)

+ (1− β)λ̃i, ∀i, (13d)
pi, p̃i, yij , δi ≥ 0, ∀i, j, (13e)
pi ≤ u, p̃i ≤ ũ, ∀i, (13f)

where the decision variables are {pi, p̃i, λi, λ̃i, yij , δi}ni,j=1.

IV. SPATIAL PRICING AND SYNERGETIC VALUE

A. General Demand

The goal of this paper is to understand the interaction
between providing transportation service and electricity ser-
vice through the same TNC platform. From the TNC’s



perspective, this amounts to characterizing and comparing
its optimal profits when it provides individual services versus
when it jointly provides two services.

To this end, denote the optimal profit of the platform,
i.e., the optimal value of problem (13), as a function of the
demand patterns by Π?(θ, θ̃). In general, we can write

Π?(θ, θ̃) = Π?(θ,0) + Π?(0, θ̃) + ∆,

where the term on the left hand side is the profit for jointly
providing two services, and the first two terms on the right
hand side are the profits for providing only transportation ser-
vice and only electricity service. The difference ∆ captures
how the interaction between providing two services impacts
the platform’s profit. Thus the first step for understanding
this interaction is to characterize the sign of ∆.

Lemma 2. The synergetic value is nonnegative, i.e., ∆ ≥ 0.

Lemma 2 states that jointly offering the two services
is no worse than individually offering these services with
designated sets of EVs. We can compare the effect of offering
electricity service in addition to the existing transportation
service with simply scaling up the number of requests:

Lemma 3. The optimal platform profit Π?(θ, θ̃) is homoge-
nous of degree 1, i.e., Π?(tθ, tθ̃) = tΠ?(θ, θ̃) for any t > 0.

By Lemma 3, increasing the request rates uniformly gen-
erates a constant rate of return. Therefore, Lemma 2 indeed
suggests a potential synergy in providing two services that is
beyond the effect of simply scaling up the system demand.

B. Balanced Demand

To provide a tighter characterization of the synergetic
value ∆, we consider the following condition on the demand
patterns.

Definition 2 (Balanced Demand). The platform’s system
demand (A,θ, θ̃) is deemed balanced if

π

u
(I− βA>)θ +

π̃

ũ
(1− β)θ̃ ≥ 0. (14)

The platform’s transportation demand (A,θ) is deemed
balanced if (14) holds with θ̃ ≡ 0, i.e.,

(I− βA>)θ ≥ 0. (15)

When u = ũ (and therefore π = π̃), the balanced demand
condition can be written as

θ + θ̃ ≥ βA>θ + βθ̃,

and is easy to interpret. Consider two consecutive time
periods. The left hand side of the inequality is the total
demand in the second time period, while the right hand side
is the vector representing the mass of drivers who stayed in
the platform after providing a service. If this condition does
not hold for certain location i, then there is some driver who
decided to stay in the platform after providing the service
and will end up unmatched in the second time period. Note
that if θ = 0, this condition always holds. This is because

transportation demand is the source of spatial imbalance as
it requires driver to move between locations.

When the demand is balanced, we can provide a complete
characterization of the solution of (13):

Theorem 1. Suppose (14) holds and π, π̃ > 0.
1) The optimal profit is

Π?(θ, θ̃) =
π2

4u
1>θ +

π̃2

4ũ
1>θ̃.

2) The platform maximizes its profit by setting identical
prices across locations:

p?i =
u

2
+

(1− β)w

2
, p̃?i =

ũ

2
+

(1− β)w

2
, ∀i.

The corresponding compensation is

c?i =
(

1+
π̃uθ̃i
πũθi

) (1− β)w

2
, c̃?i =

(
1+

πũθi

π̃uθ̃i

) (1− β)w

2
.

3) The induced system equilibrium states are

λ?i =
π

2u
θi, λ̃?i =

π̃

2ũ
θ̃i, ∀i,

x?i =
π

2u
θi +

π̃

2ũ
θ̃i, ∀i,

δ?i =
π

2u

(
θi − β

∑
j

αjiθj

)
+ (1− β)

π̃

2ũ
θ̃i, ∀i,

and y?ij = 0 for all i, j.

Theorem 1 suggests that when the demand is balanced, the
optimal prices are location independent. The compensation
is such that the expected platform earning Vi = w for all
i (see the proof of Lemma 1). As a result, no drivers will
relocate on their own (Y? = 0), and there is no idle vehicle
as every EVs at any location will be matched to a request at
every period in the equilibrium. In a sense, this is the ideal
scenario for the TNC. This is made precise as follows.

Corollary 1. Fix θ and θ̃. The platform’s optimal profit as
a function of A achieves its maximal when A is such that
the platform’s demand is balanced.

To characterize the synergetic value under the balanced
demand condition, we note that the solutions and optimal
profits under the transportation only and the electricity only
setups can be recovered as special cases of Theorem 1.

Corollary 2. Suppose π, π̃ > 0.
1) Transportation only case: If θ > 0, θ̃ = 0, and the

transportation demand is balanced (i.e. (15) holds), then
all statements in Theorem 1 holds when we set θ̃ = 0.

2) Electricity only case: If θ = 0 and θ̃ > 0, all statements
in Theorem 1 holds when we set θ = 0.

Since θ̃ ≥ 0, the transportation demand balance condition
(15) is more stringent than the demand balance condition
(14). When the transportation demand is already balanced,
there is no spatial imbalance that can be reduced by the
electricity demand, and therefore one expects no synergy
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Fig. 1: Three node network based on Uber SF data

between the two services. When we have imbalanced trans-
portation demand, the electricity service reduces the resulting
spatial imbalance and generates strictly positive synergetic
value. We summarize these observations as follows:

Corollary 3. Suppose π, π̃ > 0 and θ, θ̃ > 0.

1) If (15) (and therefore (14)) holds, then ∆ = 0.
2) If (14) holds but (15) does not hold, then ∆ > 0.

V. CASE STUDY

In this section, we empirically compare the profits of
the TNC when the two services are jointly offered versus
when they are individually offered. We consider a three node
network and take each time period to be 20 minutes. This
is sufficient to complete an average TNC trip [14] and to
complete a demand charge reduction service session [9].
Based on the discussion in [9], the revenue generated for
electricity service can be an order of magnitude higher than
the average transportation service. However, this revenue is
severely discounted by the high upfront cost of required
additional hardware (e.g. bidirectional charger), the concern
on battery degradation, and the difficulty in forecasting the
time period when the monthly peak of the user occurs. Thus
we set u = 1 and ũ = 1.5. We set w = 1 so π, π̃ > 0 holds.

The transportation demand pattern is based on the Uber
Newsroom’s San Francisco data5. In particular, we pick
three nodes with largest request rates and in close proximity
(Fig. 1). We use the line width data to obtain the origin-
destination matrix and use the circle radius data to obtain
the transportation demand:

A =

0.2736 0.2760 0.4504
0.2188 0.2616 0.5196
0.2244 0.3634 0.4122

 , θbal =

0.2985
0.3365
0.3650

 ,
where we have normalized A so each row sums up to 1
(ignoring lines connecting to other nodes not considered) and
normalized θbal so that the total transportation demand is 1.
Since this data correspond to the average Uber request rate
for a month (July 2014), it is mostly spatially balanced. For

5https://newsroom.uber.com/wp-content/uploads/
2014/07/uber_sf_connectome_.html
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Fig. 2: Profit comparison for a (mostly) balanced transporta-
tion demand pattern

instance, we can check the transportation balanced demand
condition for β ∈ {0.6, 0.9}

(I− 0.6A>)θ =

0.1562
0.1547
0.0892

 , (I− 0.9A>)θ =

 0.0850
0.0637
−0.0488

 .
Thus even with very large β, the level of imbalancedness
of the transportation demand is very small. As such, by
Corollary 3, we expect the synergetic value to be 0 for small
β values and close to 0 for larger ones.

We set θ̃bal = 1/3 and perform two set of experiments:
(a) varying β between [0, 1], and (b) fix β = 0.6 and scale
θ̃ by k where k varies between [0, 3].

The profit for jointly offering two services (Π?(θ, θ̃))
and the sum of profits for individually offering the ser-
vices (Π?(θ,0) + Π?(0, θ̃)) are compared in Fig 2. We
also plot the profit for only offering transportation service.
In addition to the profits, we label the parameter regions
based on whether the transportation (labelled T) demand is
balanced (labelled B) or imbalanced (labelled IB) per (15),
and whether the system (labelled S) demand is balanced
(i.e., whether (14) holds). The maximum percentage profit
improvement (∆/(Π?(θ,0)+Π?(0, θ̃))) is 0.26% for exper-
iment (a) and 0% for experiment (b) (since the transportation
demand is already balanced with β = 0.6).

We also consider another profile of transportation demand
where the spatial imbalance is more significant and a corre-
sponding profile of electricity demand that will help reduce
this spatial imbalance

θunb =
[
1 0 0

]>
, θ̃unb =

[
0.0 0.5 0.5

]>
.

To check the level of spatial imbalance in the transportation

https://newsroom.uber.com/wp-content/uploads/2014/07/uber_sf_connectome_.html
https://newsroom.uber.com/wp-content/uploads/2014/07/uber_sf_connectome_.html
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Fig. 3: Profit comparison for an imbalanced transportation
demand pattern

demand, for β ∈ {0.6, 0.9}, we compute

(I−0.6A>)θ =

 0.8358
−0.1656
−0.2702

 , (I−0.9A>)θ =

 0.7537
−0.2484
−0.4054

 .
The same two sets of experiments are performed for these
demand patterns. The profit comparisons are shown in Fig 3.
The maximum percentage profit improvement is 19.35% for
experiment (a) and 20.95% for experiment (b).

VI. CONCLUSION

This paper studies the spatial pricing problem for a
TNC offering both transportation and electricity services.
It is formulated as a profit maximization problem under
incentive compatibility and equilibrium flow constraints. We
show that we can recover the solution of this nonconvex
optimization via solving a simpler problem, which is convex
for several common willingness to pay distributions. With
uniform willingness to pay distributions and for general
demand, we show that offering electricity service will gen-
erate a nonnegative synergetic value. Furthermore, when the
transportation demand is spatially unbalanced, we show that
offering electricity service can reduce such imbalance, and
therefore generate a strictly positive synergetic value.

APPENDIX

Proof Sketch of Proposition 1. To prove the first part of the
proposition, notice pi = u, p̃i = ũ, ci = c̃i = 0, xi = λi =
λ̃i = δi = yij = 0 for all i and j is a feasible solution.

The proof for the second part is omitted due to page limit.
It amounts to constructing a game with agents who have
compact and convex strategy spaces and (quasi-)concave
and (upper-semi)continuous payoff functions, then formally

connecting the game’s pure strategy Nash equilibrium with
the equilibrium as defined in Definition 1. See [13] for a
similar construction.

Proof of Lemma 1. We first prove a number of claims.
(a) There exists a solution to the optimization such that
x?i ≥ λ?i + λ̃?i , ∀i. By contradiction, we assume that for all
solutions x?i < λ?i + λ̃?i for some i.
• Case I: x?i ≥ λ?i , x?i − λ?i < λ̃?i . Increasing p̃i weakly

increases the profit.
• Case II: x?i < λ?i . Increasing pi weakly increases the

profit.
(b) Solutions satisfying (a) also satisfies (1 − β)

∑
i x

?
i =∑

i δ
?
i . Using (a), we can simplify (7) to

xi = β
[∑

j

αjiλj + λ̃i +
∑
j

yji

]
+ δi, ∀i,

and simplify (8) to∑
j

yij = xi − λi − λ̃i, ∀i.

Summing up both sides of the equations, we get∑
i

xi = β
∑
i

(λi + λ̃i) + β
∑
i

∑
j

yji +
∑
i

δi

= β
∑
i

(λi + λ̃i) + β
∑
i

(xi − λi − λ̃i) +
∑
i

δi,

and therefore (1− β)
∑
i xi =

∑
i δi.

(c) Among solutions satisfying (a), if λ?i , λ̃
?
i > 0, then there

exist solutions such that
∑
i c
?
i λ
?
i + c̃?i λ̃

?
i = w

∑
i δ
?
i .

By (a), (9) simplifies to

xiVi = λi

[
ci+

∑
j

αijβVj

]
+λ̃i(c̃i+βVi)+(xi−λi−λ̃i)βw,

for all i. Summing over i, we have∑
i

[
xi − β(λi + λ̃i)

]
Vi =

∑
i

λici+λ̃ic̃i+(xi−λi−λ̃i)βw

Note that if Vi = w for all i, using (b) we have∑
i

λici + λ̃ic̃i = (1− β)w
∑
i

xi = w
∑
i

δi.

Thus the proof is completed if we can construct {ci, c̃i}ni=1

such that Vi = w for all i. Consider

ci =
xi
2λi

(1− β)w, c̃i =
xi

2λ̃i
(1− β)w, ∀i. (16)

With this compensation policy and using (a), the expected
one period earning of a driver is λi

xi
ci + λ̃i

xi
c̃i = (1 − β)w,

and the expected lifetime earning of the driver is
∑
t β

t(1−
β)w = w. Thus Vi = w ∀i with this compensation policy.

From (a), there is no loss of optimality by replacing the
flow constraints by (12d) and (12e) and setting Qi(xi, λi) =
xi and Q̃i(xi, λi, λ̃i) = λ̃i in the objective. From (c), the
objective function of (11) can be replaced with the objective
function of (12). Lastly, (16) provides a way to reconstruct



{ci, c̃i}ni=1 given a solution of (12) such that the drivers’
incentive compatibility constraints are satisfied.

Proof of Lemma 2. Denote x = {pi, p̃i, λi, λ̃i, yij , δi}ni,j=1.
Let an optimal solution of (13) with demand pattern (θ, θ̃)
be denoted by x?(θ, θ̃), and let the profit of the platform
as a function of x, θ, θ̃ be denoted by Π(x;θ, θ̃). Without
loss of generality, we can set p̃i = ũ and λ̃i = 0 for all i in
x?(θ,0). Similarly, we can set pi = u and λi = 0 for all i in
x?(0, θ̃). Consider x?(θ,0) + x?(0, θ̃). It is easy to check
that it is a feasible solution to (13) with parameter (θ, θ̃).
Now we have

Π?(θ, θ̃) ≥ Π(x?(θ,0) + x?(0, θ̃);θ, θ̃)

= Π?(θ,0) + Π?(0, θ̃),

where the first inequality follows from the fact that the
optimal value of (13) is no less than the objective value for
a feasible solution.

Proof of Lemma 3. Note that Π?(tθ, tθ̃) can be written as

t ·max
∑
i

pi
λi
t

+ p̃i
λ̃i
t
− w

∑
i

δi
t

s.t.
λi
t

= θi

(
1− pi

u

)
, ∀i,

λ̃i
t

= θ̃i

(
1− p̃i

ũ

)
, ∀i,

δi
t

=
∑
j

(yij
t
− β yji

t

)
+

(
λi
t
− β

∑
j

αji
λj
t

)
+ (1− β)λ̃i/t, ∀i,

pi, p̃i, yij , δi ≥ 0, pi ≤ u, p̃i ≤ ũ, ∀i, j.

Recognizing that the optimization is (13) with parameter
(θ, θ̃) under a change of variable for λi, λ̃i, δi and yij
(which does not change the feasible set of the problem since
these variables only have positivity constraints), we conclude
Π?(tθ, tθ̃) = tΠ?(θ, θ̃).

Proof of Theorem 1. Vectorizing, eliminating λ, λ̃ and δ
using equality constraints, and relaxing the constraint δ ≥ 0,
we convert (13) into the following optimization:

max
p,p̃,Y≥0

p>diag(θ)
(
1− 1

u
p
)

+ p̃>diag(θ̃)
(
1− 1

ũ
p̃
)

− (1− β)wθ>
(
1− 1

u
p
)
− (1− β)wθ̃>

(
1− 1

ũ
p̃
)

− (1− β)w1>Y1, (17)

where diag(z) denotes the matrix with vector z on its
diagonal, and we used the fact that A1 = 1. Since (17)
is a relaxation of (13), the optimal value of (17) is an upper
bound on the optimal value of (13). Problem (17) can be
solved analytically. In particular, an optimal solution6 is

p? =

(
u

2
+

(1− β)w

2

)
1, p̃? =

(
ũ

2
+

(1− β)w

2

)
1,

6When some θi (or θ̃i) is 0, any p?i (or p̃?i ) in the support of F (·) (or
F̃ (·)) is a solution.

and Y? = 0. For this solution of (17), if the resulting δ? is
nonnegative, then it also constitutes a solution of (13). Note
that δ? ≥ 0 is equivalent to

u− (1− β)w

u
(I− βA>)θ +

ũ− (1− β)w

ũ
(1− β)θ̃ ≥ 0,

which holds under Assumption 2. It follows that the solution
of (17) is indeed a solution of (13). We can then recover other
eliminated decision variables in (13) by substituting p?, p̃?,
and Y? in the equality constraints of (13). The expression
of {c?i , c̃?i }ni=1 is recovered based on the proof of Lemma 1.
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